Automatic target segmentation by locally adaptive image thresholding

نویسنده

  • Wen-Nung Lie
چکیده

A locally adaptive thresholding algorithm, concerning the extraction of targets from a given field of background, is proposed. Conventional histogram-based or global-type methods are deficient in detecting small targets of possibly low contrast as well. The present research is notable for solving the mentioned problems by introducing (1) shape connectivity measure based on co-occurrence statistics for threshold evaluation; and (2) no-target identification procedure for modeling a local-processing paradigm. In this manner, thresholds are determined adaptively even in the presence of space-varying noise or clutter. Experiments show that the results are reliable and even outperform those that manual operations can achieve for global thresholding.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Comparative Study and Image Analysis of Local Adaptive Thresholding Techniques

Thresholding is a simple but effective technique for image segmentation. In this paper, a general locally adaptive thresholding methods using neighborhood processing is presented. Local adaptive techniques are more effective in eliminating both uneven lighting disturbance, noise and ghost objects. In order to demonstrate the effectiveness, locally adaptive thresholding methods namely Niblack, S...

متن کامل

Automatic Multilevel Thresholding for Image Segmentation by the Growing Time Adaptive Self-Organizing Map

In this paper, a Growing TASOM (Time Adaptive Self-Organizing Map) network called “GTASOM” along with a peak finding process is proposed for automatic multilevel thresholding. The proposed GTASOM is tested for image segmentation. Experimental results demonstrate that the GTASOM is a reliable and accurate tool for image segmentation and its results outperform other thresholding methods.

متن کامل

Implementation of Bernsen’s Locally Adaptive Binarization Method for Gray Scale Images

In digital image processing, binarization (two-level thresholding) is a commonly used technique for image segmentation. It is the process of converting a gray scale image to a binary image. Furthermore, binarization methods are divided into two groups as global binarization and locally adaptive binarization. A number of binarization techniques have been proposed over the years. Bernsen’s method...

متن کامل

Reducing Light Change Effects in Automatic Road Detection

Automatic road extraction from aerial images can be very helpful in traffic control and vehicle guidance systems. Most of the road detection approaches are based on image segmentation algorithms. Color-based segmentation is very sensitive to light changes and consequently the change of weather condition affects the recognition rate of road detection systems. In order to reduce the light change ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on image processing : a publication of the IEEE Signal Processing Society

دوره 4 7  شماره 

صفحات  -

تاریخ انتشار 1995